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a b s t r a c t 

We consider a problem arising in the design of green wireless local area networks. Decisions on 

powering-on a set of access points (APs), via the assignment of one power level (PL) to each opened AP, 

and decisions on the assignment of the user terminals (UTs) to the opened APs, have to be taken simulta- 

neously. The PL assigned to an AP affects, in a nonlinear way, the capacity of the connections between the 

AP and the UTs that are assigned to it. The objective is to minimize the overall power consumption of the 

APs, which has two components: location/capacity dimensioning costs of the APs; assignment costs that 

depend on the total demands assigned to the APs. We develop a branch-and-Benders-cut (BBC) method 

where, in a non-standard fashion, the master problem includes the variables of the Benders subproblem, 

but relaxes their integrality. The BBC method has been tested on a large set of instances, and compared 

to a Benders decomposition algorithm on a subset of instances without assignment costs, where the two 

approaches can be compared. The computational results show the superiority of BBC in terms of solution 

quality, scalability and robustness. 

© 2016 Elsevier B.V. All rights reserved. 

1

 

g  

f  

d  

l  

a  

a  

m  

s  

p  

t  

w  

p

 

o  

R  

u

R  

d  

c  

c  

a  

e  

&  

D

 

s  

t  

o  

t  

S  

e  

s

 

t  

h

0

. Introduction 

We address an optimization problem arising in the design of

reen (or energy-saving) wireless local area networks (WLANs). We

ocus on the design of efficient reconfiguration algorithms to re-

uce the power consumption of the WLAN infrastructure when the

oad is scarce. Most of the currently deployed enterprise WLANs

re continuously operated at full power, i.e., all access points are

lways turned on with the transmission power set to the maxi-

um. This produces a considerable waste of energy, because the

ame power is employed at the peak hours and during the off peak

eriods. We address this issue by proposing an optimization model

hat is used to take two kinds of decisions: (i) associate each user

ith one of the available access points and (ii) set the transmission

ower level of each access point. 

The area of wireless network design requires the development

f optimization models and methods (see Kennington, Olinick, &

ajan, 2010 for an overview of the main challenges in this field).
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ecent contributions include the development of a nested Ben-

ers decomposition method ( Naoum-Sawaya & Elhedhli, 2010 ) that

ombines classical Benders decomposition ( Benders, 1962 ) with

ombinatorial Benders decomposition ( Codato & Fischetti, 2006 );

nd the derivation of pure 0–1 programming formulations, tight-

ned with strong valid inequalities ( D’Andreagiovanni, Mannino,

 Sassano, 2013 ) (based on the Ph.D. Thesis of the first author

’Andreagiovanni, 2012 ). 

The problem we consider is defined on a bipartite network

tructure, with a set of access points (APs) that must be assigned

o user terminals (UTs) in order to satisfy the user demands, with-

ut exceeding the capacity of the connections between the APs and

he UTs. Each UT must be assigned to exactly one powered-on AP.

everal different power levels (PLs) are available for powering on

ach AP. If an AP is powered-on, then exactly one PL must be as-

ociated with it. 

A key issue arises concerning the capacity of the connec-

ions between the APs and the UTs: the specific PL assigned

o a (powered-on) AP affects, in a nonlinear way, the capac-

ty of the connections between the AP and the UTs assigned

o it. The only assumption is that the transmission capacity be-

ween a UT and an AP is a nonnegative nondecreasing function

f the radiated power at the AP, which will be formally defined

n Section 2 . As a result, the optimization model is an integer
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nonlinear program, a class of notoriously difficult mathematical

programs. 

The objective is to minimize the overall power consumption of

the APs, which has two components. The first component includes

the location and capacity dimensioning costs of the APs, i.e., the

costs associated with powering-on APs and assigning a PL to each

of them. The second component concerns the assignment costs be-

tween UTs and APs, which are given by a linear dependency be-

tween the power consumed by the APs and the total demands as-

signed to the APs. In an earlier contribution by the same authors

( Gendron, Garroppo, Nencioni, Scutellà, & Tavanti, 2013 ), it was as-

sumed that the power consumed by an AP does not depend on the

demands assigned to that AP and, therefore, only the first compo-

nent of the objective function was considered. The presence of the

second component, called UT assignment costs , yields a more real-

istic problem formulation that also complicates the development

of a solution method, as discussed below. 

We propose to address the intrinsic difficulties of the problem,

i.e., nonlinear capacity constraints and complex objective function,

by developing an exact algorithm inspired by Benders decompo-

sition ( Benders, 1962 ). Since the Benders subproblem in our ap-

proach is a 0–1 program and not a linear program (LP), we use

canonical cuts ( Balas & Jeroslow, 1972 ), as in logic-based Benders

decomposition ( Hooker & Ottosson, 2003 ) and combinatorial Ben-

ders decomposition ( Codato & Fischetti, 2006 ), instead of the clas-

sical LP duality-based Benders cuts. The resulting Benders cuts

are improved by simple arguments (also used in ( Gendron et al.,

2013 )) based on the assumption that the transmission capacity

functions are nondecreasing. 

In a non-standard fashion, our master problem includes the

variables of the Benders subproblem, but relaxes their integrality.

This feature provides a simple, yet efficient, way to consider the

UT assignment costs in the master problem to ensure that effective

lower bounds are computed. Linear approximations of the nonlin-

ear transmission capacity functions are also included in the formu-

lation of the master problem. As a result, the master problem is

a mixed-integer linear programming (MILP) relaxation, which we

solve with a state-of-the-art MILP software tool (a similar approach

that solves a nonlinear integer program through the addition of

Benders cuts in a MILP relaxation can be found in ( Zhang, Romero,

Beck, & Amon, 2013 )). Instead of solving one MILP master problem

at every iteration, we use a branch-and-Benders-cut (BBC) method ,

also called Benders-based branch-and-cut method, where a single

branch-and-cut (B&C) tree is constructed and the Benders cuts are

added during the exploration of the B&C tree. 

In the constraint programming (CP) literature, this algorithmic

scheme is known as branch-and-check ( Thorsteinsson, 2001 ) and

has been the object of empirical work comparing it to a more

traditional iterative Benders decomposition approach ( Beck, 2010 ).

In these CP references, the Benders subproblem is solved with

CP and the Benders cuts are based on the notion of inference

dual, introduced in logic-based Benders decomposition ( Hooker

& Ottosson, 2003 ). In the operations research (OR) literature, BBC

has attracted the attention of many researchers recently, as it

makes better use of the reoptimization capabilities of the MILP

solvers than the classical Benders decomposition approach. This

is discussed, for instance, in ( Naoum-Sawaya & Elhedhli, 2013 ),

which uses an interior-point method to solve a Benders refor-

mulation in a BBC framework, applying it to facility location and

network design problems. Other recent implementations of the

BBC method include: ( Fortz & Poss, 2009 ), which compares BBC to

classical Benders decomposition for a multi-layer network design

problem, showing significant speedups on average; ( de Camargo,

de Miranda Jr., & Ferreira, 2011 ), which combines the generation

of outer approximation and Benders cuts in a BBC method for the

single allocation hub location problem under congestion; ( Botton,
ortz, Gouveia, & Poss, 2013 ), where a BBC method is used to solve

 hop-constrained survivable network design problem; ( Adulyasak,

ordeau, & Jans, 2013 ), which uses BBC algorithms for solving

roduction routing problems under demand uncertainty. In all

hese OR references, the Benders subproblem is an LP and the

enders cuts are based on LP duality, as in the approach originally

roposed by Benders (1962) . As mentioned above, our Benders

ubproblem is a 0–1 program and we make use instead of canon-

cal cuts ( Balas & Jeroslow, 1972 ). Canonical cuts in a wireless

etwork design problem (different from ours) have also been used

n ( Naoum-Sawaya & Elhedhli, 2010 ). A major difference between

xisting contributions and our paper is that our master problem

ncludes the variables of the Benders subproblem, but relaxes their

ntegrality. In the above references, a traditional partitioning of the

ariables into master problem variables and subproblem variables

s used. Note that this traditional partitioning has been questioned

ecently in the context of stochastic programming ( Crainic, Hewitt,

 Rei, 2014 ), where a new approach called partial decomposition

as proposed, in which a subset of scenario subproblems are kept

n the master problem. 

This paper is a follow-up on an earlier contribution by the

ame authors ( Gendron et al., 2013 ) on the special case without

T assignment costs, for which a Benders decomposition method

as been proposed. This method corresponds to a cutting-plane

pproach where feasibility cuts are iteratively added to the mas-

er problem, thanks to the information provided when solving the

enders subproblem. The latter is a feasibility problem, because of

he absence of UT assignment costs. This is in contrast with the

enders subproblem defined in the present paper, which is an op-

imization problem, given the inclusion of UT assignment costs.

his is a major difference, as the presence of such additional as-

ignment costs prevents a straightforward extension of the Ben-

ers decomposition approach used in ( Gendron et al., 2013 ), as we

larify in Section 3.5 . Another notable difference is that the mas-

er problem in ( Gendron et al., 2013 ) does not include the vari-

bles of the Benders subproblem. The decomposition adopted in

 Gendron et al., 2013 ) thus follows a traditional variable partition-

ng approach as in the original Benders method ( Benders, 1962 ),

here the variables of the master problem and those of the sub-

roblem do not overlap. In Section 4 , we compare the performance

f the two methods on the special case without UT assignment

osts addressed in ( Gendron et al., 2013 ). The computational re-

ults show the superiority of the proposed BBC approach in terms

f solution quality, scalability and robustness. 

The paper is organized as follows. In Section 2 , we describe the

roblem, which we denote as GWLANP, and we present the inte-

er nonlinear programming model we propose for the GWLANP.

he BBC method is described in Section 3 . Computational results

rom experiments on randomly generated realistic instances are re-

orted in Section 4 . The conclusion summarizes our findings and

dentifies promising research directions. 

. Problem description and formulation 

In order to state the GWLANP in a formal way, we need to char-

cterize the energy consumed by the powered-on APs and the ca-

acity of the connections between the APs and the UTs. First, let

s denote by I, J and K the sets of UTs, APs and PLs, respectively.

Concerning the energy consumed by the powered-on APs, the

ower consumed by j ∈ J is composed of a fixed component and

f two variable components. The fixed component, denoted p 0 ,

s bound to the mere fact that the device is powered-on, and

herefore, it encompasses AC/DC conversion, basic circuitry pow-

ring, dispersion, etc. The first variable power component associ-

ted with j ∈ J is given by its radiated power π j , which depends

n the PL assigned to j ∈ J . More precisely, if k ∈ K is assigned



B. Gendron et al. / European Journal of Operational Research 255 (2016) 151–162 153 

t  

v  

l  

T  

g

 

A  

a  

c  

t  

(  

v  

t  

a  

n  

C  

c  

a  

m  

t  

&  

t  

p  

p

 

p  

n  

i  

s  

f

 

 

 

 

S  

p

r

w  

i  

n  

a  

B  

r  

u

 

p  

t  

m  

i  

A  

o  

c  

a  

a  

l  

l

 

v

 

 

 

i  

t  

T

z

∑
 

∑
 

x  

i

 

x  

y  

T  

w  

e  

s  

c  

e  

l  

s  

c  

i  

c  

b  

d  

T  

w

 

b  

μ  

A  

t

∑

i  

t  

c

3

 

G  

t  

d  

i  

g  

d  

a  

e

o j ∈ J , then we have π j = p k , where p k denotes the power pro-

ided by k ∈ K. Regarding the second variable power component, it

inearly depends on the total demands assigned to j ∈ J , denoted

 j . Therefore, the energy consumed by a powered-on AP j ∈ J is

iven by p 0 + π j + μ j T j , where μj is a proportionality coefficient. 

With regard to the capacity of the connections between the

Ps and the UTs, a key issue is that the specific PL assigned to

 powered-on AP affects, in a nonlinear way, the capacity of the

onnections between the AP and the UTs assigned to it. In general,

he capacity function can be determined by means of two steps

as reported, for example, in ( Garroppo, Gendron, Nencioni, & Ta-

anti, 2014 )). First, the received power is estimated starting from

he transmitted power and the path loss model, which takes into

ccount the propagation properties of the considered network sce-

ario. Examples of path loss models can be found in ( European

ommission, 1999 ). Then, the capacity can be extracted from the

omputed signal-to-noise ratio (SNR) and other parameters, such

s the specific modulation and coding schemes, as well as the

edium access overhead. Examples of curves reporting the rela-

ion between the capacity and the SNR can be found in ( Li, Fan,

 Kaleshi, 2012; Wang, Zhang, Wu, Zhang, & Ni, 2014 ). In addi-

ion, an experimental study where the “capacity vs. transmitted

ower” curves are estimated for different system configurations is

resented in ( Huehn & Sengul, 2012 ). 

Here, the only assumption we make is that the transmission ca-

acity between i ∈ I and j ∈ J , denoted r ij ( π j ), is a nonnegative

ondecreasing function of the radiated power π j . This assumption

s widely supported by both theoretical and experimental studies,

uch as the ones cited above. In practice, the transmission capacity

unction satisfies the following conditions: 

• There exists a threshold γ ij > 0 such that r i j (π j ) = 0 if π j ≤
γ ij and r ij ( π j ) > 0 whenever π j > γ ij . Thus, j ∈ J can only be

assigned to i ∈ I when its radiated power π j remains above γ ij .
• r ij ( π j ) ≤ r max for any π j , where r max is the maximum rate

achievable by any physical connection. 

In all instances used in our computational experiments (see

ection 4 ), we use the following piecewise linear transmission ca-

acity function: 

 i j (π j ) = 

{
0 , if π j ≤ γi j , 

min { αi j π j , r max } , otherwise , 
(1) 

here αij denotes a transmission loss factor between j ∈ J and

 ∈ I . It is important to note, however, that our BBC method does

ot depend on this particular function and can be generalized to

ny nonnegative nondecreasing transmission capacity function. The

BC method only requires an upper linear approximation r u 
i j 
(π j ) to

 ij ( π j ). In the case of the function used in our instances, we simply

se r u 
i j 
(π j ) = αi j π j . 

In the GWLANP, the decisions to be taken are what APs to

ower-on, how to assign a PL to each powered-on AP and how

o assign exactly one powered-on AP to each UT. Such decisions

ust be taken in such a way as to satisfy the demand w i for each

 ∈ I, by respecting the nonlinear transmission capacities between

Ps and UTs. As indicated above, the objective is to minimize the

verall power consumption of the powered-on APs. The problem

an be seen as a discrete location problem, where the capacity to

ssign to each location (which is the power level in this context)

lso has to be decided. In other words, the GWLANP is a particu-

ar case of a broader class of location-design problems, where both

ocation and capacity dimensioning decisions must be taken. 

To model the GWLANP, we define the following sets of binary

ariables: 

• x i j = 1, if AP j ∈ J is assigned to UT i ∈ I; 0, otherwise; ( UT

assignment variables ) 
• y jk = 1, if PL k ∈ K is assigned to AP j ∈ J ; 0, otherwise. ( PL

assignment variables ) 

Given the definitions of these variables, we derive the follow-

ng relationships for the radiated power of j ∈ J and for the to-

al demands assigned to j ∈ J , respectively: π j = 

∑ 

k ∈K p k y jk and

 j = 

∑ 

i ∈I w i x i j . The model can then be written as follows: 

(GW LANP ) = min 

∑ 

j∈J 

{ ∑ 

k ∈K 
(p 0 + p k ) y jk + 

∑ 

i ∈I 
μ j w i x i j 

} 

(2) 

 

j∈J 
x i j = 1 , i ∈ I, (3)

 

k ∈K 
y jk ≤ 1 , j ∈ J , (4)

 i j ≤
∑ 

k ∈K 
y jk , i ∈ I, j ∈ J , (5)

∑ 

 ∈I| r i j (π j ) > 0 

w i x i j 

r i j (π j ) 
≤ 1 , j ∈ J , (6)

 i j ∈ { 0 , 1 } , i ∈ I, j ∈ J , (7)

 jk ∈ { 0 , 1 } , j ∈ J , k ∈ K. (8)

he objective (2) is to minimize the total power consumption,

hich depends on the powering-on decisions, on the power lev-

ls assigned to the powered-on APs, and on the total demands as-

igned to the powered-on APs. Eq. (3) are the single assignment

onstraints that impose that exactly one AP must be assigned to

ach UT. Inequalities (4) impose that at most one PL can be se-

ected for each AP. Inequalities (5) ensure that an AP cannot be as-

igned to any UT if the AP is powered-off. Inequalities (6) are the

apacity constraints for each AP. Relations (7) and (8) define the

ntegrality of the variables. Note that, given that at most one PL

an be chosen for each AP, it is not necessary to associate further

inary variables with the APs in order to state the powering-on

ecisions, since such decisions are captured by the terms 
∑ 

k ∈K y jk .
his is why the fixed power cost p 0 is part of the cost associated

ith the y jk variables in the objective function. 

Note that the problem considered in ( Gendron et al., 2013 ) can

e seen as a special case of the GWLANP where, for each j ∈ J ,

j = μ ≥ 0 , a proportionality coefficient that is constant over all

Ps. In that case, the UT assignment costs can be removed from

he objective function, since 

 

j∈J 

∑ 

i ∈I 
μw i x i j = μ

∑ 

i ∈I 
w i 

( ∑ 

j∈J 
x i j 

) 

= μ
∑ 

i ∈I 
w i , 

.e., the UT assignment costs are the same, irrespective of the solu-

ion. We call this special case the GWLANP without UT assignment

osts . 

. The branch-and-Benders-cut method 

In this section, we present the BBC method for solving the

WLANP. Sections 3.1 and 3.2 describe the master problem and

he Benders subproblem, respectively. The different types of Ben-

ers cuts added during the course of the algorithm are introduced

n Section 3.3 . Section 3.4 gives a formal statement of the BBC al-

orithm, as well as a proof of convergence. Finally, Section 3.5 is

edicated to an extensive comparison between the BBC method

nd the Benders decomposition algorithm proposed in ( Gendron

t al., 2013 ) for the GWLANP without UT assignment costs. 
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3.1. Master problem 

In order to solve the nonlinear model (2) –(8) , we propose a BBC

method. As in classical Benders decomposition, the approach con-

sists in solving a master problem, which is a relaxation of model

(2) –(8) , to which we gradually add Benders cuts. In a non-standard

way, our master problem involves both the PL assignment variables

y jk and the UT assignment variables x ij . The master problem is de-

noted M xy and is initially defined as: 

z(M xy ) = min 

∑ 

j∈J 

{ ∑ 

k ∈K 
(p 0 + p k ) y jk + 

∑ 

i ∈I 
μ j w i x i j 

} 

(9)

subject to (3), (4), (5), (8) , and ∑ 

i ∈I| r u 
i j 
(π j ) > 0 

w i x i j 

r u 
i j 
(π j ) 

≤ 1 , j ∈ J , (10)

x i j ∈ [0 , 1] , i ∈ I, j ∈ J . (11)

Constraints (10) define a relaxation of the nonlinear capacity con-

straints (6) obtained by replacing functions r ij ( π j ) by upper linear

approximations r u 
i j 
(π j ) . With the transmission capacity function

given in Eq. (1) and its linear upper approximation r u 
i j 
(π j ) = αi j π j ,

constraints (10) would take the following form: ∑ 

i ∈I 

w i x i j 

αi j 

≤
∑ 

k ∈K 
p k y jk , j ∈ J . 

Constraints (11) define the UT assignment variables as continuous

between 0 and 1. Together, these two sets of constraints, along

with constraints (3), (4), (5), (8) , define a MILP relaxation of model

(2) –(8) . During the course of the BBC algorithm, Benders cuts are

gradually added to the master problem, as we see below. 

3.2. Benders subproblem 

The master problem is solved by a B&C method implemented in

a state-of-the-art MILP solver (we use CPLEX, version 12.6.1). Each

time an integer solution ȳ is obtained during the exploration of

the B&C tree, we solve the following Benders subproblem, denoted

S x ( ̄y ) : 

z(S x ( ̄y )) = min 

∑ 

j∈ ̄J 

{ ∑ 

k ∈K 
(p 0 + p k ) ̄y jk + 

∑ 

i ∈I 
μ j w i x i j 

} 

(12)

x i j ∈ { 0 , 1 } , i ∈ I, j ∈ J̄ , (13)∑ 

j∈ ̄J | ̄r i j > 0 

x i j = 1 , i ∈ I, (14)

∑ 

i ∈I| ̄r i j > 0 

x i j w i 

r̄ i j 

≤ 1 , j ∈ J̄ (15)

x i j = 0 , (i, j) ∈ I × J̄ | ̄r i j = 0 , (16)

where J̄ ⊆ J is the set of APs that are powered-on according to

ȳ (i.e., 
∑ 

k ∈K ȳ jk = 1 ), while r̄ i j = r i j ( 
∑ 

k ∈K p k ̄y jk ) is the capacity

of the connection between i ∈ I and j ∈ J̄ induced by the power

level assignment given by ȳ . Note that the integrality of the

x ij variables is now reimposed in the Benders subproblem and

that the capacity constraints (15) are now linear. Also observe

that inequalities (15) have, in general, the structure of knapsack

constraints, which implies that S x ( ̄y ) cannot be solved as an LP.

In fact, this Benders subproblem has the structure of a gener-

alized assignment problem, which can be solved by specialized

algorithms (see, for instance, Pigatti, Poggi de Aragão, and Uchoa,

2005 and the references therein). In our implementation, we use

the same state-of-the-art MILP software tool as when solving

the master problem. Since S x ( ̄y ) is not an LP, we cannot use LP
uality-based Benders cuts, and we rely instead, as explained

elow, on the canonical cuts for the unit hypercube, studied in

 Balas & Jeroslow, 1972 ), which are also used in logic-based Ben-

ers decomposition ( Hooker & Ottosson, 2003 ) and combinatorial

enders decomposition ( Codato & Fischetti, 2006 ). 

.3. Benders cuts 

If S x ( ̄y ) is feasible, and x̄ ( ̄y ) is the computed optimal solution,

hen a feasible solution ( ̄x ( ̄y ) , ̄y ) to the original nonlinear formu-

ation (2) –(8) has been determined. If the corresponding objective

unction value z(S x ( ̄y )) is better than the value of the current best

easible solution, denoted z ∗u , then both z ∗u and the best feasible so-

ution are suitably updated. Note that z ∗u is not the B&C incumbent

alue managed by the MILP solver, since the latter corresponds to

 feasible solution to M xy , which is a relaxation of model (2) –(8) , to

hich Benders cuts are added. In fact, to ensure the convergence of

he BBC algorithm, it is necessary, as we see below in Theorem 3 ,

hat the value z ∗u is substituted to the incumbent value that would

ormally be stored by the MILP software tool when solving M xy by

&C. 

Furthermore, instead of fathoming the B&C node corresponding

o the integer solution ȳ , the following canonical cut is added to

 xy : 
 

j∈J 

∑ 

k ∈K| ̄y jk =0 

y jk + 

∑ 

j∈J 

∑ 

k ∈K| ̄y jk =1 

(1 − y jk ) ≥ 1 . (17)

he B&C algorithm is then resumed at that node, i.e., the model

orresponding to that node is now solved with the addition of cut

17), and the search in the B&C tree is continued. The rationale

ehind cut (17) is that, since the best solution x̄ ( ̄y ) for the given

onfiguration ȳ has been determined, we can cut all solutions of

he form (x, ̄y ) . Note that cut (17) is not valid for the original for-

ulation, but since it removes only the feasible solutions of the

orm (x, ̄y ) , for which we have already computed the best solution

( ̄x ( ̄y ) , ̄y ) , then no optimal solution can be missed. In fact, only the

ut corresponding to an optimal solution of the GWLANP is not

alid, since the canonical cuts associated with non-optimal solu-

ions of the problem can be added without removing any optimal

olution. Since the cut is not valid in general, M xy is no more a re-

axation of the original model, but rather a relaxation of the model

epresenting the original set of feasible solutions with the exclu-

ion of the solutions of the form (x, ̄y ) . To the best of our knowl-

dge, such a simple cut generation strategy has never been used in

 BBC or Benders decomposition approach. We further discuss this

ssue in Section 3.5 , where we compare our BBC algorithm to the

enders decomposition method presented in ( Gendron et al., 2013 )

or the GWLANP without UT assignment costs. 

When S x ( ̄y ) is infeasible, we could generate cut (17) , which is

ow obviously valid for the original model, given that it removes

nly the solution ȳ , which cannot yield a feasible solution. How-

ver, we can strengthen this cut by using simple arguments (intro-

uced in ( Gendron et al., 2013 )) based on the assumption that the

ransmission capacity functions r ij ( π j ) are nondecreasing. We first

efine the strengthened feasibility cut as follows: 
 

j∈J 

∑ 

k ∈K| p k > ̄π j 

y jk ≥ 1 , (18)

here π̄ j = 

∑ 

k ∈K p k ̄y jk . 

emma 1. If S x ( ̄y ) is infeasible, then (18) is a valid inequality to (2) –

8) . 

roof. An infeasible S x ( ̄y ) implies that the PLs assigned to the

owered-on APs, according to ȳ , do not provide enough capacity

o satisfy the demands of the UTs. Therefore, it is necessary to in-

rease at least one of the values r̄ i j , i.e., we must raise the PL of
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Algorithm 1 Algorithm BBC (Input: M xy , Output: z ∗u , ( ̄x ( ̄y ) , ̄y ) ). 
1: z ∗u = ∞ 

2: Perform B&C for solving M xy until an integer solution ȳ is found 

or the B&C search is completed (Input: z ∗u , incumbent value of 

B&C, Output: z ∗
l 
, lower bound computed by B&C) 

3: if B&C search is completed then 

4: STOP 

5: end if 

6: Solve S x ( ̄y ) 

7: if S x ( ̄y ) is feasible then 

8: if z(S x ( ̄y )) < z ∗u then 

9: z ∗u = z(S x ( ̄y )) , and store the optimal solution ( ̄x ( ̄y ) , ̄y ) to 

S x ( ̄y ) 

10: end if 

11: if z ∗u ≤ z ∗
l 

then 

12: STOP 

13: end if 

14: Add the canonical cut (17) 

15: else 

16: Solve S x ( ̃  y ) 

17: if S x ( ̃  y ) is infeasible then 

18: Add the maximally strengthened feasibility cut (20) 

19: else 

20: add the strengthened feasibility cut (18) 

21: end if 

22: end if 

23: Go to line 2 (resuming B&C at the current node) 
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model (2) –(8) . �
t least one AP (which follows from the fact that the transmis-

ion capacity functions r ij ( π j ) are nondecreasing functions of π j ,

j ∈ J ). �

We can further strengthen the Benders cut in case S x ( ̄y ) is in-

easible by first solving an auxiliary Benders subproblem S x ( ̃  y ) ,

here ˜ y is defined as follows: 

˜ 
 jk = 

{
1 , if k = k max and 

∑ 

l∈K ȳ jl = 1 , 

0 , otherwise , 
(19) 

here k max is the index of the PL providing the maximum radiated

ower. 

Indeed, if both S x ( ̄y ) and S x ( ̃  y ) are infeasible, we define the

aximally strengthened feasibility cut as: ∑ 

j∈J | ̄π j =0 

∑ 

k ∈K 
y jk ≥ 1 . (20) 

emma 2. If S x ( ̄y ) and S x ( ̃  y ) are infeasible, then (20) is a valid in-

quality to (2) –(8) . 

roof. According to ˜ y , the maximum possible radiated power is

ssociated with the group of APs that are powered-on in solution

¯ . An infeasible S x ( ̃  y ) thus implies that no feasible solution exists

hat uses only such a subset of APs. Therefore, at least one AP

hat is powered-off in ȳ (i.e., an AP j such that π̄ j = 0 ) must be

owered-on. �

Note that cut (20) coincides with cut (18) , if we consider

˜  in place of ȳ . It is, in general, a stronger cut, since 
∑ 

j∈J 
 

k ∈K| p k > ̄π j 
y jk = 

∑ 

j∈J | ̄π j =0 

∑ 

k ∈K y jk + 

∑ 

j∈J | ̄π j > 0 

∑ 

k ∈K| p k > ̄π j 
y jk ≥

 

j∈J | ̄π j =0 

∑ 

k ∈K y jk ≥ 1 . 

Whether S x ( ̄y ) is feasible or not, the B&C node corresponding to

¯ should not be fathomed, as its descendants or itself might con-

ain another feasible solution to the GWLANP with a better objec-

ive function value. That is why, in both cases, the cut is added

nd the B&C algorithm is resumed at the current node. This point

s made more precise in the following section. 

.4. Convergence of the algorithm 

The BBC algorithm is summarized in Algorithm 1 , where z ∗u 
nd z ∗

l 
denote, respectively, the best known upper bound on

 ( GWLANP ), and the best known lower bound on z ( M xy ). The upper

ound z ∗u is updated by the BBC algorithm and provided as incum-

ent value each time the B&C search is invoked. The lower bound

 

∗
l 

is updated by the B&C search and provided to the BBC algorithm

o test the stopping criterion z ∗u ≤ z ∗
l 
. 

heorem 3. The BBC algorithm identifies an optimal solution to

odel (2) –(8) , if there is one. 

roof. Assume that model (2) –(8) is feasible. Note that at least one

easible solution to (2) –(8) is identified by the BBC algorithm. In-

eed, the initial master problem M xy is a relaxation of model (2) –

8) and, consequently, its set of feasible solutions includes all fea-

ible solutions to (2) –(8) . When the B&C algorithm for solving M xy 

dentifies an integer solution ȳ , either a feasibility cut is added or

 feasible solution to (2) –(8) is identified. This last alternative will

ecessarily arise after adding a finite number of feasibility cuts,

ince model (2) –(8) is feasible and the y solutions to M xy coincide

ith the ones to (2) –(8) . 

Lemmas 1 and 2 show that the feasibility cuts (18) and (20) are

alid for (2) –(8) , and therefore their addition to M xy cannot elimi-

ate any feasible solution to model (2) –(8) . Concerning the canoni-

al cuts (17) , observe that they are added to M xy when the optimal

easible solution ( ̄x ( ̄y ) , ̄y ) corresponding to ȳ has been determined.

ince the objective function value z(S x ( ̄y )) of ( ̄x ( ̄y ) , ̄y ) is used to
mprove the best known upper bound z ∗u on z ( GWLANP ), no opti-

al solution to model (2) –(8) can be discarded by the addition of

17) . 

To conclude, observe that the number of feasible ȳ configura-

ions is finite. Therefore, after a finite number of cut additions, the

BC algorithm must end, due to either one of the following rea-

ons: 

(1) The B&C search in line 2 is completed. In this case, we have

dentified a feasible solution to (2) –(8) of objective function value

 

∗
u . Now, assume that this solution is not optimal. This implies that

here is an optimal solution to (2) –(8) , say ( x ∗, y ∗) of objective

unction value z(x ∗, y ∗) < z ∗u , for which the corresponding config-

ration y ∗ has not been generated when solving M xy by B&C. This,

n turn, implies that there exists some node p that has been fath-

med, but would have yielded configuration y ∗ after a finite num-

er of branchings. Node p has been fathomed by the lower bound

est, i.e., z l (p) ≥ z ∗u , where z l ( p ) is the lower bound associated with

ode p (recall that z ∗u is the incumbent value used in B&C). Fur-

hermore, the fact that node p would have yielded configuration

 

∗ after a finite number of branchings implies that z ( x ∗, y ∗) ≥
 

l ( p ), node p being a relaxation of subproblem S x ( y 
∗) for which an

ptimal solution is x ∗. Collecting together these facts, we obtain:

 

∗
u > z(x ∗, y ∗) ≥ z l (p) ≥ z ∗u , a contradiction. Hence, the best feasible

olution identified at the end of the BBC algorithm is necessarily

ptimal. Note that this part of the proof relies on the fact that z ∗u 
s substituted to the incumbent value that would normally be used

hen performing the B&C method in line 2. Failure to perform this

ubstitution would result into an algorithm that is not necessarily

xact. 

(2) The condition z ∗u ≤ z ∗
l 

in line 11 is verified. This case implies

hat any feasible solution ( x , y ) to the GWLANP that could still be

enerated by performing the B&C method for solving M xy has an

bjective function value z(x, y ) ≥ z ∗
l 

≥ z ∗u , and therefore cannot im-

rove upon z ∗u . 
Hence, the BBC algorithm ends with an optimal solution to
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3.5. Comparison with Benders decomposition for a special case 

In this section, we describe the Benders decomposition (BD) al-

gorithm ( Gendron et al., 2013 ) developed for the GWLANP without

UT assignment costs. Our objective is to state the similarities and

the differences between this BD algorithm and the BBC method de-

scribed above. 

One of the main differences between the two methods lies in

the way the two algorithms perform B&C on the master problem:

while the BBC method explores a single B&C tree, adding the Ben-

ders cuts during the exploration of that tree, the BD approach per-

forms B&C at every iteration, adding the Benders cuts only after

the B&C has completed its exploration. Hence, the BD algorithm

explores several B&C trees, with the master problem being gradu-

ally augmented with Benders cuts. 

Another main difference between the two approaches is the

way they define master problems. In the BD algorithm, the mas-

ter problem includes only the AP assignment variables y jk . Since

the UT assignment constraints (3) are then relaxed, the following

valid inequalities are introduced in the master problem: ∑ 

j∈J 
r u i j (π j ) ≥ w i , i ∈ I. (21)

The master problem in the BD method, denoted M 

BD 
y , can therefore

be formulated as follows: 

z(M 

BD 
y ) = min 

∑ 

j∈J 

∑ 

k ∈K 
(p 0 + p k ) y jk (22)

subject to (4), (8), (21) and the Benders cuts added so far dur-

ing the course of the algorithm. In order to generate a good set

of initial Benders cuts, the BD method first solves the relaxation

corresponding to M xy , the BBC master problem, which is further

strengthened by imposing the integrality of the UT assignment

variables x ij . This type of initialization strategy, involving the solu-

tion of a relaxation of the problem to generate a good set of initial

Benders cuts, is well-known in the Benders decomposition litera-

ture (see, for instance, McDaniel and Devine, 1977 for an early con-

tribution on this topic). All subsequent iterations solve the classical

Benders master problem M 

BD 
y . 

At every iteration of the BD algorithm, the master problem

is solved until an optimal solution ȳ 0 is obtained. All other in-

teger solutions, say ȳ 1 , ̄y 2 , . . . , ̄y n , found during the exploration

of the B&C tree, are also collected. For each solution ȳ = ȳ q , q =
0 , 1 , . . . , n, the Benders subproblem S x ( ̄y ) is solved, as in the BBC

algorithm. Note, however, that S x ( ̄y ) is no more an optimization

problem, but is rather a feasibility problem, since there are no UT

assignment costs. 

If S x ( ̄y ) is infeasible, a Benders feasibility cut (18) or (20) is gen-

erated (the BD algorithm also solves subproblem S x ( ̃  y ) , with ˜ y de-

fined as in (19) ). If S x ( ̄y ) is feasible, and x̄ ( ̄y ) is the computed fea-

sible solution, then a feasible solution ( ̄x ( ̄y ) , ̄y ) to the GWLANP is

obtained. If the corresponding objective function value z(S x ( ̄y )) is

better than the value of the current best feasible solution, denoted

z ∗u , then both z ∗u and the best feasible solution are updated. When-

ever z ∗u ≤ z ∗
l 
, where z ∗

l 
is the optimal value of the master problem,

we can conclude that an optimal solution to the GWLANP has been

identified. This is the case when S x ( ̄y ) is feasible and ȳ = ȳ 0 , the

optimal solution to the master problem: the optimality of ȳ for the

master problem and the feasibility of the Benders subproblem suf-

fice to conclude to the optimality of any feasible solution to S x ( ̄y ) ,

because of the absence of UT assignment costs. 

Such a conclusion cannot be derived for the general case of the

GWLANP with UT assignment costs. This is why we rely on the

addition of the canonical cuts (17) in the BBC algorithm, which

then take the place of the usual Benders optimality cuts, i.e., they

cut the solutions of the form (x, ̄y ) when the Benders subproblem
 x ( ̄y ) is feasible. For the GWLANP without UT assignment costs,

hese cuts are not needed. In fact, they are simply replaced by up-

ating the B&C incumbent value with z ∗u . This, in effect, cuts all the

easible solutions ( ̄x ( ̄y ) , ̄y ) such that z(S x ( ̄y )) ≥ z ∗u . 
It is worth noting that, at any iteration of the BD algorithm, the

aster problem always defines a relaxation of the GWLANP. Hence,

he stopping condition z ∗u ≤ z ∗
l 

can equivalently be replaced by z ∗u =
 

∗
l 
, since z ∗

l 
is then necessarily a lower bound on z ( GWLANP ). In

ontrast, the master problem in the BBC algorithm is also a relax-

tion, but not of the GWLANP, rather of a restriction of the prob-

em obtained by adding the canonical cuts corresponding to the

easible Benders subproblems. Hence, for the BBC method, it might

appen that z ∗u < z ∗
l 

at the conclusion of the algorithm. 

To further highlight the similarities and the differences between

he two algorithms, an outline of the BD algorithm is provided in

lgorithm 2 . 

lgorithm 2 Algorithm BD (Input: M 

BD 
y , Output: z ∗u , ( ̄x ( ̄y ) , ̄y ) ). 

1: z ∗u = ∞ 

2: Perform B&C for solving M 

BD 
y (or, initially, M xy with the inte-

gralityimposed on the x i j variables) until an optimal solution

ȳ 0 of value z ∗
l 

is found(Input: z ∗u , incumbent value of B&C, Out-

put: z ∗
l 
, lower bound computed by B&C) 

3: Let ȳ 1 , ̄y 2 , . . . , ̄y n be the other integer solutions obtained during

B&C 

4: for all ȳ = ȳ q , q = 0 , . . . , n do 

5: Solve S x ( ̄y ) 

6: if S x ( ̄y ) is feasible then 

7: if z(S x ( ̄y )) < z ∗u then 

8: z ∗u = z(S x ( ̄y )) , and store the feasible solution ( ̄x ( ̄y ) , ̄y ) to

S x ( ̄y ) 

9: end if 

10: if z ∗u ≤ z ∗
l 

then 

11: STOP 

12: end if 

13: else 

14: Solve S x ( ̃  y ) 

15: if S x ( ̃  y ) is infeasible then 

16: Add the maximally strengthened feasibility cut (20) 

17: else 

18: add the strengthened feasibility cut (18) 

19: end if 

0: end if 

21: end for 

2: Go to line 2 (restarting B&C from scratch) 

. Computational results 

Our computational experiments aim to assess the effectiveness

nd the efficiency of the BBC method, and to stress its robustness

nd scalability issues. Note that the GWLANP has never been ad-

ressed in the general form studied in this paper. Therefore, no

omparison with approaches from the literature can be performed.

owever, since the BD algorithm proposed in ( Gendron et al., 2013 )

ddresses the special case without UT assignment costs, we com-

are the two approaches on instances of this type. The main objec-

ive of this computational comparison is to assess the competitive-

ess of the BBC method, especially for large-scale instances. The

BC and BD algorithms have been implemented in C++ using IBM

LOG CPLEX 12.6.1. The experiments have been performed on a PC

ith 2 CPUs Intel Xeon E5-2609 v2 (quad Core) @ 2.50 gigahertz

no hyperthreading), 128 gigabyte RAM. 

In Section 4.1 , we describe the procedure used to generate a

et of 340 realistic GWLANP instances. Section 4.2 presents the
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easures used to assess the performance of the BBC algorithm and

o compare it with the BD method. Section 4.3 focuses mostly on a

omputational comparison of the BBC and BD algorithms. We also

riefly investigate the impact of UT assignment costs and strength-

ned cuts on the performance of the BBC algorithm. 

.1. Generation of instances 

To generate realistic GWLANP instances, we use related features

xtracted from real-life measurement campaigns in corporate en-

ironments ( Balazinska & Castro, 2003; Jardosh et al., 2009 ). We

rst specify the values of |I| , |J | and |K| . Then, the positions of

he APs and of the UTs in each instance are randomly determined

s follows. First, we divide the test field into a regular grid of |J |
quares. Then, the APs are placed one per square, with their coor-

inates chosen randomly within the square. The set of UTs is also

plit into |J | subsets, and the elements of each subset are ran-

omly spread over each square. This strategy ensures enough uni-

ormity in the placement of the UTs and the APs, so as to mimic a

orporate scenario and to avoid heavily unbalanced instances. 

Other relevant instance characteristics are the transmission loss

actors αij , which have been computed by using a simplified ver-

ion of the COST-231 multi-wall path loss model for indoor, non-

OS environments ( European Commission, 1999 ), and the maxi-

um achievable rate r max , set to 54 megabits per second according

o the 802.11g standard. In addition, the addressed traffic demands

 i have an average value of 300 kilobits per second, and they have

een randomly generated within a variation of ±10 percent. To

omplete the parameter list, we set the sensitivity thresholds γ ij 

nd the power component figures p 0 and p k according to ( Cisco,

014 ). Finally, the proportionality coefficients μj are selected based

n the indications in ( Garcia-Saavedra, Serrano, Banchs, & Bianchi,

012 ). 

By setting μ j = 0 , j ∈ J , we have generated 340 instances that

re used to compare the two algorithms, BBC and BD. We di-

ide these instances into three classes, according to the number of

Ps, which helps us differentiate the behavior of the algorithms,

s explained below. The classes of small and medium instances

ave 10 and 15 APs, respectively. Each includes 6 sets of 20 in-

tances each, for a total of 120 instances, obtained by combining

I| = { 100 , 150 , 200 } with |K| = { 3 , 4 } . The class of large instances

s characterized by a number of APs equal to 20, 30 or 50. For

ach such value of |J | , 3 sets of 10 instances each (for a total

f 90 instances) are obtained by combining |I| = { 20 0 , 30 0 , 50 0 }
ith |K| = 4 . 

.2. Performance measures 

To assess the performance of the algorithms, we use the follow-

ng measures: 

• The CPU time, in seconds, denoted Time . Note that the algo-

rithms are given a time limit before they are stopped (3600

seconds on small/medium instances and 7200 seconds on large

instances). In addition to Time , we also report the time ratio of

algorithm A defined as 

τA = T ime (A ) / min { T ime (BBC) , T ime (BD ) } , 
where Time(A) is the CPU time taken by algorithm A , which can

be either BBC or BD. 
• The final gap, in percentage, between the bounds, measured as 

Gap = max { 0 , 100 × (z ∗u − z ∗l ) /z ∗l } . 
Note that, because it might happen that z ∗u < z ∗

l 
at the end of

the BBC algorithm, it is necessary to modify the usual formula
for computing the gap. Even if z ∗
l 

is not necessarily a lower

bound on z ( GWLANP ), this modified gap measure is a fair ap-

proximation of the distance between the current best known

upper bound z ∗u and the optimal value z ( GWLANP ). Note that

z ∗
l 

is a lower bound on z ( GWLANP ) for the BD method. Hence,

the reported gaps are exact and not approximations, as it is the

case for the BBC algorithm. 
• To better compare the capacity of the algorithms to identify

high-quality solutions when they reach the time limit, we re-

port the upper bound ratio of algorithm A defined as 

μA = z ∗u (A ) / min { z ∗u (BD ) , z ∗u (BBC) } , 
where z ∗u (A ) is the best upper bound on z ( GWLANP ) found by

algorithm A , either BBC or BD. 
• The total number of cuts (denoted Cuts ), including strength-

ened and maximally strengthened feasibility cuts for both al-

gorithms, as well as canonical cuts for the BBC algorithm. 
• The total number of nodes generated by the BBC algorithm, de-

noted Nodes . For the BD algorithm, we could have reported the

same measure, but we found the number of iterations, Iter , to

be a more useful measure of the computational effort. 

These different performance measures are computed for each

nstance. Then, we chose to summarize these detailed results in

wo ways. First, we compute the arithmetic average of each per-

ormance measure (except the time ratio and the upper bound ra-

io) over each set of instances, i.e., all the instances with the same

ize |J | , |I| , |K| . Using this simple approach, we are able to com-

are the behavior of the algorithms with respect to problem size.

n particular, we highlight the importance of the number of APs in

xplaining the relative performance of the algorithms. To perform

 more detailed comparative analysis on each class of instances,

mall, medium and large, we use performance profiles with respect

o either the time ratio (on small and medium instances, where

ost instances are solved to optimality) or the upper bound ra-

io (on large instances, where most instances cannot be solved to

ptimality within the time limit), as suggested in ( Dolan & Moré,

002 ). The performance profile of algorithm A with respect to met-

ic τ A ( s ) measured over each instance s in a set S is simply the

raph of the cumulative distribution function, defined as 

 A (t) = |{ s ∈ S | τA (s ) ≤ t}| / | S| . 
Such performance profiles provide useful information about the

elative performance of algorithms, often hidden when we look

nly at average results. For example, the performance profiles of

he algorithms with respect to the time ratio on a set of instances

ill tell us which algorithm is more often the fastest (by looking at

he largest value between F BBC (1) and F BD (1)) or the proportion of

he instances in the set for which algorithm BD is more than two

imes slower than algorithm BBC (by computing 1 − F BD (2) ). As we

ant to focus on the instances for which the performance of the

wo algorithms differ, we remove instances in the set for which the

easure gives the same value. This way, an algorithm that achieves

 value 1 on a particular ratio (time or upper bound) is the “win-

er” (in other words, there is no tie). In particular, when the two

lgorithms reach the time limit on a given instance, that instance

s removed from the set of instances on which we compute the

erformance profiles with respect to the time ratio, i.e., there is no

winner” in that case. However, if only one of the two algorithms

eaches the time limit, the other algorithm is the “winner” and the

nstance is kept when computing the performance profiles. Note

hat the time ratio of the “loser” for that instance underestimates

he “true” time ratio that would have been obtained if the “loser”

as allowed to run long enough to stop with a proof of optimality.
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Table 1 

Average results of BBC and BD; 240 small/medium instances (max. 3600 seconds) and 90 large instances (max. 7200 seconds); Gap ( percent); Time (second); number of 

cuts; number of nodes (BBC); number of iterations (BD); solved/total number of instances. 

BBC BD 

|J | , |I| , |K| Gap Time Cuts Nodes Solved Gap Time Cuts Iter Solved 

10, 100, 3 0 9 524 702 20/20 0 2 28 15 20/20 

10, 100, 4 0 17 939 1299 20/20 0 4 47 23 20/20 

10, 150, 3 0 49 1307 1793 20/20 0 18 117 70 20/20 

10, 150, 4 0 158 4159 5611 20/20 0 117 441 246 20/20 

10, 200, 3 0 706 4586 5971 20/20 0 190 798 381 20/20 

10, 200, 4 0 631 6985 9556 20/20 0 530 1182 505 20/20 

15, 100, 3 0 155 5289 7630 20/20 0 490 554 359 20/20 

15, 100, 4 0 171 6147 9662 20/20 0 .40 946 668 277 19/20 

15, 150, 3 0 237 4293 6779 20/20 0 184 197 91 20/20 

15, 150, 4 0 708 11343 17593 20/20 4 .37 1627 857 313 11/20 

15, 200, 3 1 .49 1684 6704 10384 15/20 11 .57 2531 1018 460 6/20 

15, 200, 4 2 .30 2029 10632 16618 15/20 20 .71 2885 1212 4 4 4 4/20 

20, 200, 4 1 .00 5213 27466 46102 4/10 27 .78 7200 1326 527 0/8 a 

20, 300, 4 5 .37 7200 13467 23408 0/10 58 .10 7200 1040 428 0/10 

20, 500, 4 30 .40 7200 1088 2454 0/10 157 .54 7200 1180 419 0/7 a 

30, 200, 4 2 .29 6594 37098 67120 1/10 42 .19 7200 1337 372 0/8 a 

30, 300, 4 7 .42 7200 15156 30780 0/10 81 .17 7200 1195 309 0/10 

30, 500, 4 16 .94 7200 1318 3384 0/10 148 .10 7200 867 209 0/8 a 

50, 200, 4 3 .70 7200 24503 62913 0/10 74 .62 7200 1567 337 0/9 a 

50, 300, 4 5 .52 7200 9901 27949 0/10 98 .59 7200 1317 260 0/7 a 

50, 500, 4 11 .00 7200 2006 6080 0/10 145 .38 7200 955 194 0/8 a 

a Some instances removed: the first iteration could not be completed within 7200 seconds 
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4.3. Analysis of the performance of the algorithms 

Table 1 summarizes the results of the experiments on the two

algorithms, BBC and BD, with time limits of 3600 seconds and

7200 seconds, respectively, for small/medium and large instances.

We recall that: small instances are characterized by |J | = 10 and

thus represent the 6 sets of instances in the upper part of the ta-

ble; medium instances have 15 APs and correspond to the 6 sets

of instances in the middle part of the table; large instances, with

more than 15 APs, are the 9 sets of instances shown in the lower

part of the table. For the two algorithms, Gap , Time and Cuts are

shown, while the number of nodes and the number of iterations

are given, respectively, for BBC and BD. These performance mea-

sures are averaged over all instances in a given set. In addition,

the table also shows, in column Solved , a fraction where the nu-

merator is the number of instances solved to optimality within the

time limit and the denominator is the number of instances in the

corresponding set (20 for each small/medium set and 10 for each

large set). Note that, for 15 of the 90 large instances, the BD al-

gorithm could not complete the first iteration (i.e., solving by B&B

the first master problem) within the limit of 7200 seconds. Since

no gaps are obtained for these instances, we removed them when

computing the average results for the BD algorithm. The denom-

inator in column Solved then shows how many instances in each

set were used to compute the average performance measures. 

If we analyze first the performance of each algorithm indepen-

dently, we observe that the BBC algorithm solves to optimality

most instances in the small and medium classes. Indeed, only 10

of the 240 instances could not be solved within the time limit of

3600 seconds. Moreover, all instances with |I| = 100 and 150 are

solved to optimality, while high-quality results are obtained for in-

stances with |I| = 200 . This last observation is also true for the

large instances, where 5 instances out of 30 with |I| = 200 are

solved to optimality, with average gaps below 4 percent. The algo-

rithm shows relatively good performance on large instances with

|I| = 300 , with average gaps below 8 percent, but it is struggling

on the largest instances with |I| = 500 , with average gaps between

11 percent and 30 percent. 

We also looked at the results obtained by solving the same 340

instances, but by keeping the UT assignment costs. The results are
imilar, except that the average CPU times are about twice larger

or the instances with UT assignment costs. This is not surprising,

iven that the Benders subproblems for these instances are opti-

ization problems that are more difficult to solve than the feasi-

ility problems for the case without UT assignment costs. Another

ssue we considered when evaluating the performance of the BBC

lgorithm is the impact of strengthened and maximally strength-

ned cuts. Specifically, we disabled the option of generating these

uts and examined the results obtained by comparing them with

he BBC method using these cuts. We show the results on the class

f small instances, since it is the one with the largest number of

nstances solved to optimality by the two approaches (117 out of

20). The performance profiles of BBC and BBC with no strengthened

uts (BBC-NS) with respect to the time ratio are shown in Fig. 1 . We

ee that, with strengthened cuts, only 36 percent of the instances

re solved faster, but less than 2 percent of the instances are solved

ore than two times slower, with a maximum time ratio around 4.

ithout strengthened cuts, 10 percent of the instances are solved

ore than two times slower and the maximum time ratio exceeds

 (in fact, it is 27). By looking at the detailed results, we observe

hat BBC-NS is faster on “easy” instances (solved within 60 sec-

nds), but in general slower, sometimes considerably so, for more

ifficult instances. Note that 3 instances out of the 120 small in-

tances could not be solved to optimality by BBC-NS, with one of

hese instances having a time ratio of 16. 

Turning to the performance of the BD algorithm, Table 1 shows

hat it solves to optimality all small instances and a majority of the

edium instances (80 out 120). However, on medium instances, its

erformance deteriorates sharply as the size increases: only 10 of

he 40 instances with |I| = 200 are solved to optimality, display-

ng average gaps above 10 percent. On large instances, the situa-

ion gets worse. As mentioned above, 15 of the 90 large instances

ould not go beyond the first iteration. None of the remaining 75

nstances could be solved to optimality, while the average gaps are

lways above 25 percent and could go higher than 150 percent.

e also note that, irrespective of the class of instances, the per-

ormance deteriorates significantly with an increase in the num-

er of PL assignment variables (i.e., the y jk variables), which can

e seen, in particular, by examining the values of Time and Iter . In-

eed, on small instances with a fixed value of |I| , both the time
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Fig. 1. Small instances: performance profiles of BBC and BBC-NS w.r.t. time ratio in [1,5]. 

Fig. 2. Small instances: performance profiles of BBC and BD w.r.t. time ratio in [1,3]. 
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nd the number of iterations increase when |K| increases from 3

o 4, but more importantly, the ratio Time / Iter also increases, which

ndicates that the time per BD iteration (that depends mostly on

he time to solve the master problem by B&B) increases. The same

bservation applies to medium instances with a fixed value of |I| ,
here the ratio Time / Iter increases with an increase of |K| . On

arge instances with a fixed value of |I| , we make a similar ob-

ervation: Time being constant, we see a significant decrease in

he number of iterations when |J | increases, showing again that

he time per BD iteration increases significantly with an increase

n the number of PL assignment variables. 

When we compare the two algorithms, we first note that the
BC method is also sensitive to an increase in the number of PL i  
ssignment variables, as can be observed from the increase in the

verage number of generated nodes (column Nodes in Table 1 ) on

mall/medium instances when |K| increases for fixed values of |I|
nd |J | . BBC is, however, much less sensitive than BD, as can be

asily observed by looking at the relative increase in Time when

K| increases from 3 to 4 for fixed |I| , |J | : the increase is always

harper for BD (with the exception of the instances with |I| = 200

nd |J | = 15 , which can be discarded because very few instances

re solved to optimality by BD). We even observe a decrease with

BC in one case: when |I| = 200 and |J | = 10 , Time decreases

rom 706 to 631 with the increase of |K| . 
The different ways in which the algorithms perform with an

ncrease in the number of AP assignment variables also explain
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Fig. 3. Medium instances: performance profiles of BBC and BD w.r.t. time ratio in [1,10]. 

Fig. 4. “Difficult” medium instances: performance profiles of BBC and BD w.r.t. time ratio in [1,10]. 
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the major differences observed when we look at the three classes

of instances. On small instances, the BD algorithm is significantly

faster than the BBC algorithm, as can be seen by the average val-

ues of Time in Table 1 . This observation is confirmed by the perfor-

mance profiles of the two algorithms with respect to the time ratio

( Fig. 2 ). This figure shows that 84 percent of the small instances

are solved faster by BD and that the BBC algorithm is more than 3

times slower than BD on about 50 percent of the small instances.

A plausible explanation for the relatively poor performance of the

BBC algorithm on small instances might be the large number of

cuts it generates compared to the BD method. 

On medium instances, Table 1 shows a completely different sit-

uation: on 5 of the 6 sets of instances, the average performance
f BBC is better than that of BD and significantly so on the 60

argest instances. Particularly on these instances, the BD algorithm

pends a lot of time solving hundreds of master problems, each of

hich become significantly heavier to solve as the size increases,

specially the number of PL assignment variables. The performance

rofiles shown in Fig. 3 seem to tell a different story: we see that

2 percent of the medium instances are solved faster by BD and

hat the BBC algorithm is more than 10 times slower than BD on

bout 50 percent of the medium instances. This apparent contra-

iction is easily explained by two facts: first, a significant number

f medium instances are solved very quickly by the BD algorithm,

hile the BBC algorithm is typically more than 10 times slower on

hese instances; second, the BD algorithm is stopped prematurely
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Fig. 5. Large instances: performance profiles of BBC and BD w.r.t. upper bound ratio in [1,1.3]. 
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n a majority of the largest instances and, as a result, its time ra-

io is significantly underestimated. These two facts explain why the

erformance profiles make the BD algorithm “look so good” on the

edium instances. To show a different picture, we removed from

he comparison the instances solved in less than 10 seconds (an

rbitrary threshold) by BD. There are 45 such instances; the time

atio of the BBC algorithm on these instances varies between 9

nd 183. The performance profiles on the remaining “difficult” in-

tances are shown in Fig. 4 . We see that 80 percent of these “diffi-

ult” medium instances are solved faster by the BBC algorithm and

hat the BD algorithm is at least 10 times slower on 12 percent

f these instances. Note that the situation would have been worse

or BD if the time limit was increased, since the computing ratios

or 40 instances are underestimated when the time limit is 3600

econds. 

On large instances, Table 1 shows the superiority of the BBC al-

orithm as the size increases. Overall, the BBC algorithm is able

o construct master problems with significant information, both by

ncluding the UT assignment variables and by generating a large

umber of Benders cuts. Fig. 5 shows the performance profiles of

he two algorithms with respect to the upper bound ratio. We

ecall that the instances where the two algorithms obtained the

ame upper bounds are removed from the comparison, leaving us

ith 42 instances. The performance profiles show that the BBC al-

orithm found a better upper bound for 81 percent of these in-

tances and that the worst upper bound shows a ratio smaller than

.08. By comparison, the BD algorithm shows an upper bound ratio

maller than 1.08 for less than 60 percent of these instances, while

ts worst upper bound ratio exceeds 1.3. 

. Conclusion 

In this paper, we considered a location-design problem that

rises from the development of network reconfiguration algorithms

or reducing the power consumption of wireless local area net-

orks (WLANs). The resulting optimization problem, called the

reen WLAN problem, or GWLANP, was formally described and

odeled. While the GWLANP was introduced in ( Gendron et al.,

013 ), we studied a non-trivial extension of the problem where

he power consumed by each access point depends on the de-
ands assigned to the access points. An exact solution method,

ased on the branch-and-Benders-cut framework, was developed.

he results on a large set of realistic instances showed that the

pproach is effective and efficient, as it delivers high-quality solu-

ions in limited computational effort. Furthermore, when compar-

ng its performance on the special case solved by the algorithm

roposed in ( Gendron et al., 2013 ), we showed that the proposed

lgorithm is preferable in terms of solution quality, scalability and

obustness. 

This work opens up interesting research perspectives. In par-

icular, it would be interesting to generalize the proposed branch-

nd-Benders-cut approach to other optimization problems. Several

eatures of the algorithm seem to be generalizable, in particular,

he inclusion of the Benders subproblem variables in the formula-

ion of the master problem and the addition of cuts that exclude

easible solutions, but that are not based on the objective function

alue, as in classical Benders decomposition methods. 
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